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What is Machine Learning?
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Machine Learning

Learning
The process of converting experience into expertise or knowledge.

Machine Learning
Machine learning is automated learning. We program computers so
that they can learn and improve based on input available to them.
• The input to a learning algorithm is training data,
representing experience.

• The output of a learning algorithm is expertise, which we then
use to perform some task.

• A successful learning algorithm should be able to progress
from individual examples to broader generalization.

(Shalev-Shwartz and Ben-David 2014, 19f.)
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When Do We Need Machine Learning?

When do we rely on machine learning rather than directly
programing computers to carry out the task at hand?

• Complex tasks: Tasks that we do not understand well
enough to extract a well-defined program from our expertise
(e.g., analysis of large and complex data, driving).

• Tasks that change over time: Machine learning tools are,
by nature, adaptive to the changes in the environment they
interact with (e.g., spam detection, speech recognition).
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Supervised Versus Unsupervised Learning

Supervised Learning
• Data: for every observation i = 1, . . . , n, we observe a vector
of inputs xi and a response yi.

• Goal: fit a model that relates response yi to xi in order to
accurately predict the response for future observations.

• If Y is quantitative, then this problem is a regression problem;
if Y is categorical, then it is a classification problem.

Unsupervised Learning
• Data: for every observation i = 1, . . . , n, we observe a vector
of inputs xi but no associated response yi.

• Goal: learning about relationships between the inputs or
between the observations.
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Supervised Learning
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Fundamental Problem

Suppose Y = f(X) + ε, where X ⊥⊥ ε and E[ε] = 0. Goal is to
estimate f based on observed data (X, Y ).

2.1 What Is Statistical Learning? 17
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .

(Source: James et al. 2013, 17)
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Fundamental Problem

• Given estimate f̂ and inputs X, we can predict Ŷ = f̂(X).
• How accurate is Ŷ as a prediction for Y ?
• For fixed f̂ and X,

E
[
(Y − Ŷ )2

]
= E

[(
f(X) + ε− f̂(X)

)2
]

=
[
f(X)− f̂(X)

]2
︸ ︷︷ ︸

reducible

+ V ar
[
ε
]

︸ ︷︷ ︸
irreducible

(1)

• Our goal is to estimate f so as to minimize the reducible error.
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How Do We Estimate f?

• Our goal is to apply a machine learning method to training
data in order to estimate the unknown f .

• Training data consist of {(xi, yi)}i=1,...,n, where
xi = (xi1, xi2, . . . , xip)T .

• There are a range of methods for estimating f , some more
and some less flexible with regard to the functional form of f .

• Flexible methods can fit a wider range of possible functional
forms for f , but this comes at the cost of a greater potential
for overfitting.
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Example: f Estimated by Methods with Different Flexibility
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FIGURE 2.3. The plot displays income as a function of years of education

and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.

The accuracy of Ŷ as a prediction for Y depends on two quantities,
which we will call the reducible error and the irreducible error. In general,

reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ϵ, which, by definition, cannot be predicted using X . Therefore, variability
associated with ϵ also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ϵ.

Why is the irreducible error larger than zero? The quantity ϵ may con-
tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ϵ may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

(Source: James et al. 2013, 18)
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Example: f Estimated by Methods with Different Flexibility
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0, β1, . . . , βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.

Figure 2.4 shows an example of the parametric approach applied to the
Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .

An example of a non-parametric approach to fitting the Income data is
shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-

thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.

As we have seen, there are advantages and disadvantages to parametric
and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.

(Source: James et al. 2013, 22ff.)
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