
Introduction to Machine Learning
Session 1c: Assessing Model Accuracy

Reto Wüest

Department of Political Science and International Relations
University of Geneva



1/19

Outline

1 Selection of a Machine Learning Method

2 Assessing Model Accuracy in Regression Problems
Measuring the Quality of Fit of a Method
The Bias-Variance Trade-Off
Cross-Validation

3 Assessing Model Accuracy in Classification Problems
Measuring the Error Rate of a Method
The Bias-Variance Trade-Off
Cross-Validation Revisited



2/19

Selection of a Machine Learning
Method
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Selection of a Machine Learning Method

No-Free-Lunch Theorem
There is no universal learning method that performs best on all
learning tasks.

This implies that. . .
• We need to decide for any given data set which method
performs best.

• To evaluate the performance of a method on a data set, we
need a way to measure how well its predictions match the
observed data.
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Assessing Model Accuracy in
Regression Problems
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Measuring the Quality of Fit of a Method

• In regression problems, the most commonly used performance
measure is the mean squared error (MSE)

MSE = 1
n

n∑
i=1

(
yi − f̂(xi)

)2
, (1)

where f̂(xi) is the prediction that f̂ produces for the ith
observation.

• The MSE in (1) is computed using the training data, so it is
the training MSE.

• However, what we care about is how well the method performs
on new (i.e., previously unseen) test data {(x̃i, ỹi)}i=1,...,m.

• We therefore select the method that minimizes the test MSE

test MSE = 1
m

m∑
i=1

(
ỹi − f̂(x̃i)

)2
. (2)
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Measuring the Quality of Fit of a Method

• What happens if we select instead the method that minimizes
the training MSE in (1)? 2.2 Assessing Model Accuracy 31
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

smallest. But what if no test observations are available? In that case, one
might imagine simply selecting a statistical learning method that minimizes
the training MSE (2.5). This seems like it might be a sensible approach,
since the training MSE and the test MSE appear to be closely related.
Unfortunately, there is a fundamental problem with this strategy: there
is no guarantee that the method with the lowest training MSE will also
have the lowest test MSE. Roughly speaking, the problem is that many
statistical methods specifically estimate coefficients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.

Figure 2.9 illustrates this phenomenon on a simple example. In the left-
hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with different levels of smoothness. It is

smoothing
splineclear that as the level of flexibility increases, the curves fit the observed

data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many different fits to this data.

(Source: James et al. 2013, 31)

• Overfitting the data: a model that is less flexible than the one
we selected would have yielded a smaller test MSE.
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The Bias-Variance Trade-Off

• The U-shape in the test MSE curve is the result of two
competing properties of learning methods.

• The expected test MSE for value x0 can be decomposed into
the sum of three quantities

E

[(
y0 − f̂(x0)

)2
]

= V ar
[
f̂(x0)

]
+
(
Bias

[
f̂(x0)

])2

+ V ar
[
ε
]

︸ ︷︷ ︸
Irreducible

error

. (3)

• To minimize the expected test MSE, we need to select a
method that simultaneously achieves low variance and low
bias.
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The Bias-Variance Trade-Off

• What are the bias and variance of a method?

• Bias: The error that we introduce by approximating the true
f by the estimate f̂ .

• Variance: Different training data sets result in a different f̂ .
The variance refers to the amount by which f̂ would change if
we estimated it using a different training data set.
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The Bias-Variance Trade-Off

• More flexible methods have higher variance, while less flexible
methods have higher bias. This is the bias-variance trade-off.36 2. Statistical Learning
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(ϵ)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.

The relationship between bias, variance, and test set MSE given in Equa-
tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-off. Good test set performance of a statistical learning method re-

bias-variance
trade-offquires low variance as well as low squared bias. This is referred to as a

trade-off because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-off is one of the most important recurring themes in this book.

In a real-life situation in which f is unobserved, it is generally not pos-
sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-off in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
Chapter 5 we discuss cross-validation, which is a way to estimate the test
MSE using the training data.

36 2. Statistical Learning
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(ϵ)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.

The relationship between bias, variance, and test set MSE given in Equa-
tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-off. Good test set performance of a statistical learning method re-

bias-variance
trade-offquires low variance as well as low squared bias. This is referred to as a

trade-off because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-off is one of the most important recurring themes in this book.

In a real-life situation in which f is unobserved, it is generally not pos-
sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-off in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
Chapter 5 we discuss cross-validation, which is a way to estimate the test
MSE using the training data.

(Source: James et al. 2013, 36)

• In practice f is unobserved, making it impossible to explicitly
compute the test MSE, bias, or variance for a method.

• We need to estimate the test MSE based on training data
(e.g., by using cross-validation).



10/19

Cross-Validation

• Cross-validation (CV) is a re-sampling method that can be
used to estimate the test error of a learning method based on
the training data.

• Randomly split the n training observations into 2 ≤ k ≤ n
non-overlapping groups (folds) of approximately equal size.

• Use the first fold as the validation data set and the remaining
folds as the training data set.

• Fit the model on the training observations.
• Use the fitted model to make predictions for the excluded
observations and compute the MSE.
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Cross-Validation

• Repeat the procedure, each time using another fold as the
validation data set. This gives k estimates of the test error,
MSE1,MSE2, . . . ,MSEk.

• The CV estimate for the test MSE is given by the average

CV(k) = 1
k

k∑
i=1

MSEi. (4)

• If k < n, then this procedure is called k-fold cross-validation.
• If k = n, then we call it leave-one-out cross-validation
(LOOCV).
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Assessing Model Accuracy in
Classification Problems
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Measuring the Error Rate of a Method

• Suppose that we estimate f on the basis of training data
{(xi, yi)}i=1,...,n, where y1, . . . , yn are qualitative.

• The most commonly used approach for quantifying the
accuracy of f̂ is the error rate

error rate = 1
n

n∑
i=1

1(yi 6= ŷi), (5)

where ŷi is the predicted class label for i using f̂ and
1(yi 6= ŷi) is an indicator variable that equals 1 if yi 6= ŷi

(misclassification) and 0 if yi = ŷi (correct classification).
• The error rate in (5) is the training error rate because it is
computed based on the training data.
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Measuring the Error Rate of a Method

• Again, however, we are more interested in selecting a method
that minimizes the error rate on new test data
{(x̃i, ỹi)}i=1,...,m

test error rate = 1
m

m∑
i=1

1(ỹi 6= ̂̃yi). (6)

• One can show that the test error rate is minimized by the
Bayes classifier, which assigns each observation to the most
likely class, given its predictor values.

• The Bayes classifier produces the lowest possible test error
rate (the Bayes error rate).

• The Bayes error rate is analogous to the irreducible error in
the regression setting.
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Measuring the Error Rate of a Method

Simulated Data38 2. Statistical Learning
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.

corresponds to predicting class one if Pr(Y = 1|X = x0) > 0.5, and class
two otherwise.

Figure 2.13 provides an example using a simulated data set in a two-
dimensional space consisting of predictors X1 and X2. The orange and
blue circles correspond to training observations that belong to two different
classes. For each value of X1 and X2, there is a different probability of the
response being orange or blue. Since this is simulated data, we know how
the data were generated and we can calculate the conditional probabilities
for each value of X1 and X2. The orange shaded region reflects the set of
points for which Pr(Y = orange|X) is greater than 50 %, while the blue
shaded region indicates the set of points for which the probability is below
50 %. The purple dashed line represents the points where the probability
is exactly 50 %. This is called the Bayes decision boundary. The Bayes

Bayes
decision
boundary

classifier’s prediction is determined by the Bayes decision boundary; an
observation that falls on the orange side of the boundary will be assigned
to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.

The Bayes classifier produces the lowest possible test error rate, called
the Bayes error rate. Since the Bayes classifier will always choose the class

Bayes error
ratefor which (2.10) is largest, the error rate at X = x0 will be 1−maxj Pr(Y =

j|X = x0). In general, the overall Bayes error rate is given by

1 − E

(
max

j
Pr(Y = j|X)

)
, (2.11)

(Source: James et al. 2013, 38)

For each X = x, there is a probability that Y is orange or blue. The
orange region is the set of x for which Pr(Y = orange | X = x) > 0.5
and the blue region is the set for which Pr(Y = orange | X = x) ≤ 0.5.
The dashed line is the Bayes decision boundary.
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Measuring the Error Rate of a Method

• For real data, we do not know Pr(Y = j | X = x), so we
cannot compute the Bayes classifier.

• We need to estimate Pr(Y | X) and then classify a given
observation to the class with the highest estimated probability.

• One method to do so is the K-nearest neighbors (KNN)
classifier. Given a K ∈ Z>0 and a test observation x0, KNN
identifies the K points in the training data closest to x0,
indicated by N0, and estimates the conditional probability for
each class j as the fraction of points in N0 whose response
values equal j

Pr(Y = j | X = x0) = 1
K

∑
i∈N0

1(yi = j). (7)

It then assigns x0 to the class j with the largest probability.
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The Bias-Variance Trade-Off

KNN Applied to the Simulated Data

K = 1

2.2 Assessing Model Accuracy 41
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KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.

K = 100

2.2 Assessing Model Accuracy 41
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KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.

(Source: James et al. 2013, 41)
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The Bias-Variance Trade-Off

As 1/K increases, KNN becomes more flexible. A flexible KNN
has low bias but high variance, while a less flexible KNN has lower
variance but higher bias.

42 2. Statistical Learning
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the
level of flexibility (assessed using 1/K) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.

In both the regression and classification settings, choosing the correct
level of flexibility is critical to the success of any statistical learning method.
The bias-variance tradeoff, and the resulting U-shape in the test error, can
make this a difficult task. In Chapter 5, we return to this topic and discuss
various methods for estimating test error rates and thereby choosing the
optimal level of flexibility for a given statistical learning method.

2.3 Lab: Introduction to R

In this lab, we will introduce some simple R commands. The best way to
learn a new language is to try out the commands. R can be downloaded from

http://cran.r-project.org/

2.3.1 Basic Commands

R uses functions to perform operations. To run a function called funcname,
function

we type funcname(input1, input2), where the inputs (or arguments) input1
argument

(Source: James et al. 2013, 42)
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Cross-Validation Revisited

• As for regression problems, the level of flexibility is critical to
the performance of a classification method.

• We can again use cross-validation to choose the optimal level
of flexibility.

• However, instead of using MSE to quantify test error, we now
use the number of misclassified observations.

• In the classification setting, the CV estimate for the test error
rate is

CV(k) = 1
k

k∑
i=1

Erri, (8)

where Erri is the test error rate given by Equation (6).
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