Introduction to Machine Learning

Session 1d: The Lasso

Reto Wüest

Department of Political Science and International Relations University of Geneva

Outline

1 The Lasso

2 Comparing the Lasso and Ridge Regression

3 Selection of the Tuning Parameter

- A disadvantage of ridge regression is that it will always include all p predictors in the model.
- The ridge regression penalty $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$ shrinks all coefficients towards 0, but it does not set any of them exactly to 0.
- The Lasso overcomes this disadvantage by replacing the β_j^2 term in the ridge regression penalty by $|\beta_j|$.

 Therefore, the Lasso coefficient estimates are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$
 (1)

- As with ridge regression, the Lasso shrinks the estimates towards 0.
- However, when λ is sufficiently large, the Lasso forces some estimates to be exactly equal to 0 (the Lasso thus performs variable selection).

- As in ridge regression, the tuning parameter λ plays a critical role:
 - If $\lambda = 0$, then the Lasso estimates are identical to the least squares estimates.
 - When λ becomes sufficiently large, the Lasso estimates are set exactly equal to 0.
- Depending on the value of λ , the Lasso can produce a model involving any number of variables.
- In contrast, ridge regression will always include all of the variables in the model.

• The Lasso coefficient estimates solve the problem

$$\underset{\beta}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{s.t.} \quad \sum_{j=1}^{p} |\beta_j| \le s. \quad (2)$$

The Ridge regression coefficient estimates solve the problem

$$\underset{\beta}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{s.t.} \quad \sum_{j=1}^{p} \beta_j^2 \le s. \quad (3)$$

- If p=2, Lasso tries to find the set of coefficient estimates that lead to the smallest RSS, subject to the budget constraint $|\beta_1|+|\beta_2|\leq s$.
- If p=2, ridge regression tries to find the set of coefficient estimates that lead to the smallest RSS, subject to the budget constraint $\beta_1^2+\beta_2^2\leq s$.

Ridge Regression

(Source: James et al. 2013, 222)

- $\hat{\beta}$ is the least squares solution.
- The diamond and the circle are the Lasso and ridge regression constraints, respectively.
- The ellipses are the set of estimates with a constant RSS.

- The Lasso has the advantage of producing simpler, and therefore more interpretable, models than ridge regression.
- However, which method leads to better prediction accuracy?
- Neither the Lasso nor ridge regression will universally dominate the other.
 - The Lasso tends to perform better when only a relatively small number of predictors have substantial coefficients.
 - Ridge regression tends to perform better when there are many predictors, all with coefficients of roughly equal size.

Selection of the Tuning Parameter

Selection of the Tuning Parameter

- Ridge regression and the Lasso require us to select a value for the tuning parameter λ.
- How do we choose the optimal λ ?
- Cross-validation provides a way to tackle this problem:
 - Choose a grid of λ values and compute the CV error for each value.
 - Select the tuning parameter value for which the CV error is smallest.
 - Re-fit the model using all available training observations and the selected λ value.