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Bagging

e Decision trees suffer from high variance: small changes in the
training data can lead to quite different results.

e We would like to have a method with low variance: the results
are similar if the method is applied repeatedly to distinct data
sets.

e Bootstrap aggregation, or bagging, is a general-purpose
procedure for reducing the variance of a machine learning
method, and it is frequently used in the context of decision
trees.
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Bagging

e Given a set of n independent observations Z1,..., Z,, each
with variance o2, the variance of the mean Z of the
observations is a2 /n.

e Hence, averaging a set of observations reduces variance.

e We could reduce the variance (increase the prediction
accuracy!) of a machine learning method as follows:

e take B training sets from the population;
e train the method on each training set to get predictions
@), (@), ..., fP(x);

e average the resulting predictions
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Bagging

e However, we generally do not have access to multiple training
sets.

e Instead, we can bootstrap:

e generate B bootstrapped training sets by taking repeated
samples from the (single) training set;

e train the method on the bth bootstrapped training set to get
prediction f*(x);

e average all predictions to obtain

rba 1 < Fxb
5e) = 23 ). @)
b=1

e This approach is called bagging!
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Bagging (for Regression Trees)

e Construct B regression trees using B bootstrapped training
sets, and average the resulting predictions.

e Each tree is grown deep and is not pruned. Hence, each tree
has high variance, but low bias.

e Averaging these B trees reduces the variance.

e Bagging has been shown to give impressive improvements in
accuracy by combining hundreds or thousands of trees.
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Bagging (for Classification Trees)

e How can bagging be extended to a classification problem?

e Construct B classification trees using B bootstrapped training
sets.

e For a given test observation, we record the class predicted by
each of the B trees, and take a “majority vote.”

e Hence, the overall prediction is the most commonly occurring
class among the B predictions.
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Bagging

e With bagging, using a very large number of trees B will not
lead to overfitting.

e In practice, we use a value of B sufficiently large to achieve
good performance.

e How do we estimate the test error of a bagged model?
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Out-of-Bag Error Estimation

o With bagging, we can estimate the test error without the need
to perform CV.

o Recall that the trees are repeatedly fit to bootstrapped
subsets of the training set.

e It turns out that, on average, each tree is fit to around 2/3 of
the training observations. The remaining 1/3 of the training
observations not used to fit a given tree are called the
out-of-bag (OOB) observations.
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Out-of-Bag Error Estimation

e We can predict the response for the ith observation using
each of the trees in which that observation was OOB. This
will yield about B/3 predictions.

e To obtain a single prediction for the ith observation, we can
average these predicted responses (regression) or take a
majority vote (classification).

e After doing this for all n observations, we can compute the
overall OOB MSE (regression) or classification error
(classification).

e The resulting OOB error is a valid estimate of the test error
for the bagged model.
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Variable Importance Measures

e Bagging typically has a better prediction accuracy than a
single tree.

e However, this comes at the expense of interpretability (it is no
longer possible to represent the model as a single tree and it is
no longer clear which variables are most important).

o Therefore, it can be useful to compute an overall summary of
the importance of each predictor using the RSS (regression) or
the Gini index (classification).
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Variable Importance Measures

e For regression trees: we can record the total amount that the
RSS is decreased due to splits over a given predictor, averaged
over all B trees.

e For classification trees: we can record the total amount that
the Gini index is decreased due to splits over a given predictor,
averaged over all B trees.

e In both cases, a large value indicates an important predictor.
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Variable Importance Measures: Example

A Variable Importance Plot for the Heart Disease Data
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Variable Importance
(Source: James et al. 2013, 320)

The plot shows the mean decrease in the Gini index for each variable,

relative to the largest.
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Random Forests
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Random Forests

e Random forests provide an improvement over bagged trees.
e They involve a small tweak that decorrelates the trees:
e As in bagging, we build a number of decision trees on
bootstrapped training samples.
e But at each split in the tree-building process, we only consider
a random sample of m predictors, m < p, as candidates for the
split.
o A fresh sample of m predictors is taken at each split, typically
of size m =~ /p.
e Therefore, at each split in the tree, the algorithm is not even
allowed to consider a majority of the available predictors.
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Random Forests

e Does this sound crazy?

e Suppose that there is one very strong predictor in the data
set, along with a number of moderately strong predictors.

e In bagging, most or all of the individual trees will use this
strong predictor in the top split.

e Consequently, all bagged trees will look quite similar to each
other, so the predictions from these trees will be highly
correlated.
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Random Forests

e Averaging highly correlated quantities leads to a smaller
reduction in variance than averaging uncorrelated quantities.

e Therefore, bagging will not lead to a substantial reduction in
variance over a single tree.

e In random forests, on average (p — m)/p of the splits will not
even consider the strong predictor.

e Random forests decorrelate the trees, making the average of
the trees less variable and hence more reliable.
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Random Forests

e The difference between bagging and random forests depends
on the choice of predictor subset size m.

e If m = p, then the random forest is equivalent to bagging.

e As with bagging, random forests will not overfit if we increase
B, so in practice we use a sufficiently large value of B (B is
sufficiently large when the error rate has settled down).
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Example: Bagging and Random Forests

Bagging and Random Forest Results for the Heart Disease Data
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(Source: James et al. 2013, 318)

The dashed line indicates the test error resulting from a single

classification tree. Random forests were applied with m = ,/p.
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