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Bagging
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Bagging

• Decision trees suffer from high variance: small changes in the
training data can lead to quite different results.

• We would like to have a method with low variance: the results
are similar if the method is applied repeatedly to distinct data
sets.

• Bootstrap aggregation, or bagging, is a general-purpose
procedure for reducing the variance of a machine learning
method, and it is frequently used in the context of decision
trees.
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Bagging

• Given a set of n independent observations Z1, . . . , Zn, each
with variance σ2, the variance of the mean Z̄ of the
observations is σ2/n.

• Hence, averaging a set of observations reduces variance.
• We could reduce the variance (increase the prediction
accuracy!) of a machine learning method as follows:

• take B training sets from the population;
• train the method on each training set to get predictions
f̂1(x), f̂2(x), . . . , f̂B(x);

• average the resulting predictions

f̂ avg(x) = 1
B

B∑
b=1

f̂ b(x). (1)



5/19

Bagging

• However, we generally do not have access to multiple training
sets.

• Instead, we can bootstrap:
• generate B bootstrapped training sets by taking repeated

samples from the (single) training set;
• train the method on the bth bootstrapped training set to get

prediction f̂∗b(x);
• average all predictions to obtain

f̂bag(x) = 1
B

B∑
b=1

f̂∗b(x). (2)

• This approach is called bagging!
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Bagging (for Regression Trees)

• Construct B regression trees using B bootstrapped training
sets, and average the resulting predictions.

• Each tree is grown deep and is not pruned. Hence, each tree
has high variance, but low bias.

• Averaging these B trees reduces the variance.
• Bagging has been shown to give impressive improvements in
accuracy by combining hundreds or thousands of trees.
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Bagging (for Classification Trees)

• How can bagging be extended to a classification problem?
• Construct B classification trees using B bootstrapped training
sets.

• For a given test observation, we record the class predicted by
each of the B trees, and take a “majority vote.”

• Hence, the overall prediction is the most commonly occurring
class among the B predictions.
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Bagging

• With bagging, using a very large number of trees B will not
lead to overfitting.

• In practice, we use a value of B sufficiently large to achieve
good performance.

• How do we estimate the test error of a bagged model?
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Out-of-Bag Error Estimation

• With bagging, we can estimate the test error without the need
to perform CV.

• Recall that the trees are repeatedly fit to bootstrapped
subsets of the training set.

• It turns out that, on average, each tree is fit to around 2/3 of
the training observations. The remaining 1/3 of the training
observations not used to fit a given tree are called the
out-of-bag (OOB) observations.
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Out-of-Bag Error Estimation

• We can predict the response for the ith observation using
each of the trees in which that observation was OOB. This
will yield about B/3 predictions.

• To obtain a single prediction for the ith observation, we can
average these predicted responses (regression) or take a
majority vote (classification).

• After doing this for all n observations, we can compute the
overall OOB MSE (regression) or classification error
(classification).

• The resulting OOB error is a valid estimate of the test error
for the bagged model.
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Variable Importance Measures

• Bagging typically has a better prediction accuracy than a
single tree.

• However, this comes at the expense of interpretability (it is no
longer possible to represent the model as a single tree and it is
no longer clear which variables are most important).

• Therefore, it can be useful to compute an overall summary of
the importance of each predictor using the RSS (regression) or
the Gini index (classification).
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Variable Importance Measures

• For regression trees: we can record the total amount that the
RSS is decreased due to splits over a given predictor, averaged
over all B trees.

• For classification trees: we can record the total amount that
the Gini index is decreased due to splits over a given predictor,
averaged over all B trees.

• In both cases, a large value indicates an important predictor.
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Variable Importance Measures: Example

A Variable Importance Plot for the Heart Disease Data320 8. Tree-Based Methods
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FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.
Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quanti-
ties. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.

The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes

(Source: James et al. 2013, 320)

The plot shows the mean decrease in the Gini index for each variable,
relative to the largest.



14/19

Random Forests
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Random Forests

• Random forests provide an improvement over bagged trees.
• They involve a small tweak that decorrelates the trees:

• As in bagging, we build a number of decision trees on
bootstrapped training samples.

• But at each split in the tree-building process, we only consider
a random sample of m predictors, m < p, as candidates for the
split.

• A fresh sample of m predictors is taken at each split, typically
of size m ≈ √p.

• Therefore, at each split in the tree, the algorithm is not even
allowed to consider a majority of the available predictors.
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Random Forests

• Does this sound crazy?
• Suppose that there is one very strong predictor in the data
set, along with a number of moderately strong predictors.

• In bagging, most or all of the individual trees will use this
strong predictor in the top split.

• Consequently, all bagged trees will look quite similar to each
other, so the predictions from these trees will be highly
correlated.
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Random Forests

• Averaging highly correlated quantities leads to a smaller
reduction in variance than averaging uncorrelated quantities.

• Therefore, bagging will not lead to a substantial reduction in
variance over a single tree.

• In random forests, on average (p−m)/p of the splits will not
even consider the strong predictor.

• Random forests decorrelate the trees, making the average of
the trees less variable and hence more reliable.
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Random Forests

• The difference between bagging and random forests depends
on the choice of predictor subset size m.

• If m = p, then the random forest is equivalent to bagging.
• As with bagging, random forests will not overfit if we increase
B, so in practice we use a sufficiently large value of B (B is
sufficiently large when the error rate has settled down).
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Example: Bagging and Random Forests

Bagging and Random Forest Results for the Heart Disease Data318 8. Tree-Based Methods
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FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.

that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We

out-of-bag
can predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the
overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating

3This relates to Exercise 2 of Chapter 5.

(Source: James et al. 2013, 318)

The dashed line indicates the test error resulting from a single
classification tree. Random forests were applied with m = √p.
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