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Principal Components Analysis
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Principal Components Analysis

e Suppose that we wish to visualize n observations with
measurements on a set of p features, X1, Xo,..., X, as part
of an exploratory data analysis.

e How can we achieve this goal?

e We could examine two-dimensional scatterplots of the data,
each of which containing the n observations’ measurements
on two of the features.
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Principal Components Analysis

e However, there would be (£) = p(p — 1)/2 such scatterplots
(e.g., 45 scatterplots for p = 10).

e Moreover, these scatterplots would not be informative since
each would contain only a small fraction of the total
information present in the data set.

o Clearly, a better method is required to visualize the n
observations when p is large.
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Principal Components Analysis

e QOur goal is to find a low-dimensional representation of the
data that captures as much of the information as possible.

e PCA is a method that allows us to do just this.

e It finds a low-dimensional representation of a data set that
contains as much as possible of the variation.
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Principal Components Analysis

idea behind PCA is the following:

Each of the n observations lives in a p-dimensional space, but
not all of these dimensions are equally interesting.

PCA seeks a small number of dimensions that are as
interesting as possible.

“Interesting” is determined by the amount that the
observations vary along a dimension.

Each of the dimensions found by PCA is a linear combination
of the p features.
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How Are the Principal Components
Determined?
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How Are the Principal Components Determined?

e The first principal component of features X1, Xa,..., X, is
the normalized linear combination

Z1 = ¢p11X1 +¢21X2+...+¢p1Xp (1)
that has the largest variance.
e By normalized, we mean that 3°%_, ¢35 =1.

e The elements ¢11,...,¢p1 are called the loadings of the first
principal component. Together, they make up the principal
component loading vector, ¢1 = (¢11 P21 --- dp1)l.
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How Are the Principal Components Determined?

e Why do we constrain the loadings so that their sum of squares
is equal to 17

o Without this constraint, the loadings could be arbitrarily large
in absolute value, resulting in an arbitrarily large variance.

e Given an n X p data set X, how do we compute the first
principal component?

e As we are only interested in variance, we center each variable
in X to have mean 0.
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How Are the Principal Components Determined?

e We then look for the linear combination of the feature values
of the form
Zi1 = $11%i1 + P21Ti2 + ... + Gp1Tip (2)

that has the largest sample variance, subject to the constraint
P42
e Hence, the first principal component loading vector solves the
optimization problem

2

1 (2 P
arg max —Z qujl:c,-j s.t. Zgb?l =1. (3)
j=1

$11,0p1 | V5T j=1
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How Are the Principal Components Determined?

e Problem (3) can be solved via an eigen decomposition (for
details, see Hastie et al. 2009, 534ff.).

e The 211,..., 2,1 are called the scores of the first principal
component.

o After the first principal component Z; of the features has been
determined, we can find the second principal component Zs.
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How Are the Principal Components Determined?

e The second principal component is the linear combination of
X1,...,Xp that has maximal variance out of all linear
combinations that are uncorrelated with Z7.

e The second principal component scores 212, 229, . . ., Zno take
the form

Zi2 = P12%51 + P22%i2 + . ..+ PpaTip, (4)

where ¢ is the second principal component loading vector,
with elements @12, $22, ..., Ppo.

e It turns out that constraining Zs to be uncorrelated with Z; is
equivalent to constraining the direction ¢ to be orthogonal to
the direction ¢;.
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Example: USA Arrests Data

e For each of the 50 US states, the data set contains the
number of arrests per 100,000 residents for each of three
crimes: Assault, Murder, and Rape.

e We also have for each state the population living in urban
areas: UrbanPop.

e The principal component score vectors have length n = 50,
and the principal component loading vectors have length
p=4.

e PCA was performed after standardizing each variable to have
mean 0 and standard deviation 1.
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Example: USA Arrests Data

Biplot (principal component scores and loading vectors for the first two
principal components)
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(Source: James et al. 2013, 378)
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Example: USA Arrests Data

e In the figure, the blue state names represent the scores for the
first two principal components (axes on the bottom and left).

e The orange arrows indicate the first two principal component
loading vectors (axes on the top and right).

e For example, the loading for Rape on the first component is
0.54, and its loading on the second component 0.17 (the word
Rape in the plot is centered at the point (0.54,0.17)).
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Example: USA Arrests Data

e The first loading vector places approximately equal weight on
the crime-related variables, with much less weight on
UrbanPop. Hence, this component roughly corresponds to a
measure of overall crime rates.

e The second loading vector places most of its weight on
UrbanPop and much less weight on the other three features.
Hence, this component roughly corresponds to the level of
urbanization of a state.
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Interpretation of Principal Components

Interpretation I: Principal component loading vectors are the
directions in feature space along which the data vary the most.

Population size (in 10,000) and ad spending for a company (in 1,000)
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Interpretation of Principal Components

Interpretation Il: The first M principal component loading
vectors span the M-dimensional hyperplane that is closest to the n
observations.

Simulated three-dimensional data set

Second principal component
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(Source: James et al. 2013, 380)
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Scaling the Variables

e The results obtained by PCA depend on the scales of the
variables.

e In the US Arrests data, the variables are measured in different
units: Murder, Rape, and Assault are occurrences per
100,000 people and UrbanPop is the percentage of a state's
population that lives in an urban area.

e These variables have variance 18.97, 87.73, 6945.16, and
209.5, respectively.

o If we perform PCA on the unscaled variables, then the first
principal component loading vector will have a very large
loading for Assault.
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Scaling the Variables

US Arrests data
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Scaling the Variables

e Suppose that Assault were measured in occurrences per 100
people rather than per 100,000 people.

e In this case, the variance of the variable would be tiny, and so
the first principal component loading vector would have a very
small value for that variable.

e We typically scale each variable to have a standard deviation
of 1 before we perform PCA, so that the principal components
do not depend on the choice of scaling.

e However, if the variables are measured in the same units, we
might choose not to scale the variables.
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Uniqueness of the Principal Components

e Each principal component loading vector is unique, up to a
sign flip.

e The reason is that a principal component loading vector
specifies a direction in p-dimensional space. Flipping the sign
has no effect as the direction does not change.

e Similarly, the score vectors are unique up to a sign flip, since
the variance in Z is the same as the variance in —Z.
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The Proportion of Variance Explained

e Above, we performed PCA on a simulated three-dimensional
data set (left panel) and projected the data onto the first two
principal component loading vectors (right panel).

e In this case, the two-dimensional representation of the
three-dimensional data successfully captures the major pattern
in the data.

e But how much of the information in a data set is lost by
projecting the observations onto the first few principal
components? Or, how much of the variance in the data is not
contained in the first few principal components?
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The Proportion of Variance Explained

e The total variance present in a data set is (assuming that the
variables have been centered)

Z 4312] (5)

e The variance explained by the mth principal component is

2
OimTij | (6)
1

1 n n p

1
2 mm =2 | 2
i=1 i=1 \Jj=
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The Proportion of Variance Explained

e Therefore, the Proportion of Variance Explained (PVE) by the
mth principal component is
2
1 (201 dymes)

P n 2
j=1 Py & Tij

(7)

e To compute the cumulative PVE of the first M principal
components, we can sum (7) over each of the first M PVEs.

e In the US Arrests data, the first principal component explains
62.0% of the variance in the data and the second principal
component explains 24.7% of the variance.
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The Proportion of Variance Explained

e Together, the first two principal components explain ~ 87% of
the variance and the last two principal components explain
only ~ 13% of the variance.

PVE (scree plot) and cumulative PVE
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(Source: James et al. 2013, 383)
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How Many Principal Components Should We Use?

A n x p data matrix X has min(n — 1, p) principal
components.

e Our goal is to use the smallest number of principal
components required to get a good understanding of the data.

e We typically decide on the number of principal components by
examining a scree plot (see above).

e We do so by eyeballing the scree plot and looking for an
“elbow” in the plot (a point at which the PVE drops off).
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