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Clustering

e Clustering refers to a set of techniques for finding subgroups,
or clusters, in a data set.

e The goal is to partition the observations of a data set into
distinct groups so that the observations within each group are
similar to each other, while the observations in different
groups are different from each other.

e This is an unsupervised problem because we are trying to
discover structure (distinct clusters) on the basis of a data set.
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Clustering Versus PCA

e Both clustering and PCA seek to simplify data via a small
number of summaries.
e However, their mechanisms are different:

o PCA tries to find a low-dimensional representation of the
observations that explains a good fraction of the variance;

o Clustering tries to find homogeneous subgroups among the
observations.

4/16



K-Means Clustering and Hierarchical Clustering

e There are many clustering methods; K-means clustering and
hierarchical clustering are the two best-known approaches.

e In K-means clustering, we seek to partition the observations
into a pre-specified number of clusters.

e In hierarchical clustering, we do not know in advance how
many clusters we want.

e We can cluster observations on the basis of the features in
order to identify subgroups among the observations; or we can
cluster features on the basis of the observations in order to
discover subgroups among the features.
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K-Means Clustering
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K-Means Clustering

e K-means clustering partitions a data set into K distinct,
non-overlapping clusters.

e We must first specify the desired number of clusters K.

e The K-means algorithm then assigns each observation to
exactly one of the K clusters.
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K-Means Clustering: Example

Simulated data set with 150 observations in two-dimensional space
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(Source:

James et al. 2013, 387)
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Details of K-Means Clustering

e Let C1,...,Ck denote sets containing the indices of the
observations in each cluster.

e These sets satisfy two properties:

®CiLUCU...UCk ={1,...,n}. In other words, each
observation belongs to at least one of the K clusters.

® C,NCy =0 forall k# k' In other words, no observation
belongs to more than one cluster.

e The goal is to find a good clustering, i.e., one for which the
within-cluster variation is as small as possible.
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Details of K-Means Clustering

e The within-cluster variation W (C}) is a measure of the
amount by which the observations within cluster C}, differ
from each other.

e We want to partition the observations into K clusters such
that the sum of the within-cluster variation is as small as
possible:

K
arg min {Z W(Ck)} . (1)

Cl,..‘,CK k=1

e To solve (1), we need to define the within-cluster variation
W (Ck).
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Details of K-Means Clustering

e The most common definition of W (C}) is

wW(C ’ Z ZI‘U e 2 (2)

1,1'eCy, j=1

where |Cy| is the number of observations in cluster C.

e Combining (1) and (2) gives the optimization problem in
K-means clustering:

argmm Z Z Z@J %] . (3)
""" | k|zz€Ck] 1

11/16



Details of K-Means Clustering

e Solving (3) is a very difficult problem, since there are many(!)
ways to partition n observations into K clusters (unless K
and n are small).

e However, the following algorithm can be shown to provide a
local optimum to the K-means optimization problem.
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Algorithm for K-Means Clustering

Algorithm: K-Means Clustering

@ Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for the

observations.

@ lterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for
the observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).
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Algorithm for K-Means Clustering

K-means algorithm run on the simulated data set with 150 observations

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Algorithm for K-Means Clustering

e Because the K-means algorithm finds a local rather than a
global optimum, the results obtained will depend on the initial
random cluster assignments in Step 1 of the algorithm.

e Therefore, it is important to run the algorithm multiple times
with different random initial values.

e Then one selects the best solution, i.e., that for which the
objective (3) is smallest.
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Algorithm for K-Means Clustering

different initial cluster assignments

Local optima obtained by running K-means clustering six times using
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(Source: James et al. 2013, 390)
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