RECSM Summer School: Machine Learning for Social Sciences

Session 3.4: Hierarchical Clustering

Reto Wijest

Department of Political Science and International Relations University of Geneva

Outline

Hierarchical Clustering Interpreting a Dendrogram The Hierarchical Clustering Algorithm Choice of Dissimilarity Measure

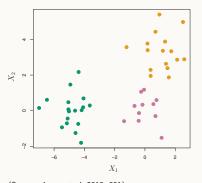
2 Practical Issues in Clustering

Hierarchical Clustering

Hierarchical Clustering

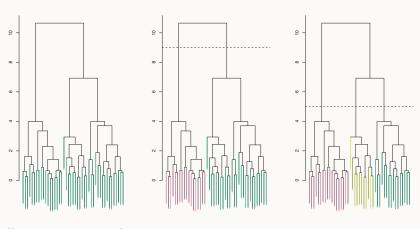
- A potential disadvantage of K-means clustering is that it requires us to pre-specify the number of clusters K.
- Hierarchical clustering is an alternative approach that does not require us to do that.
- Hierarchical clustering results in a tree-based representation of the observations, called a dendrogram.
- We focus on bottom-up or agglomerative clustering, which is the most common type of hierarchical clustering.

- \bullet We have (simulated) data consisting of 45 observations in two-dimensional space.
- The data were generated from a three-class model.
- However, suppose that the data were observed without the class labels and we want to perform hierarchical clustering.



(Source: James et al. 2013, 391)

Results obtained from hierarchical clustering (with complete linkage)



(Source: James et al. 2013, 392)

- Each leaf of the dendrogram represents an observation.
- As we move up the tree, leaves fuse into branches and branches into other branches.
- Observations that fuse at the bottom of the tree are similar to each other, whereas observations that fuse close to the top are different.
- We compare the similarity of two observations based on the location on the vertical axis where the branches containing the observations are first fused.
- We cannot compare the similarity of two observations based on their proximity along the horizontal axis.

- How do we identify clusters on the basis of a dendrogram?
- To do this, we make a horizontal cut across the dendrogram (see center and right panels above).
- The sets of observations beneath the cut can be interpreted as clusters.
- One single dendrogram can be used to obtain any number of clusters.
- The height of the cut to the dendrogram serves the same role as the K in K-means clustering: it controls the number of clusters obtained.

Hierarchical Clustering Versus K-Means Clustering

- Hierarchical clustering is called hierarchical because clusters obtained by a cut at a given height are nested within clusters obtained by cuts at any greater height.
- However, this assumption of hierarchical structure might be unrealistic for a given data set.
- Suppose that we have a group of people with a 50-50 split of males and females, evenly split among three countries of origin.

Hierarchical Clustering Versus K-Means Clustering

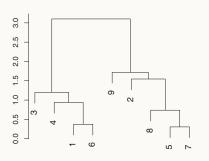
- Suppose further that the best division into two groups splits these people by gender, and the best division into three groups splits them by country.
- In this case, the clusters are not nested.
- Hierarchical clustering might yield worse (less accurate) results than *K*-means clustering.

The Hierarchical Clustering Algorithm

- The hierarchical clustering dendrogram is obtained via the following algorithm.
- We first define a dissimilarity measure between each pair of observations (most often, Euclidean distance is used).
- Starting at the bottom of the dendrogram, each of the n observations is treated as its own cluster.
- The two clusters that are most similar to each other are then fused so that there are now n-1 clusters.
- Next the two clusters that are most similar to each other are fused again, leaving us with n-2 clusters.
- The algorithm proceeds until all observations belong to one single cluster.

The Hierarchical Clustering Algorithm: Example

Hierarchical clustering dendrogram and initial data

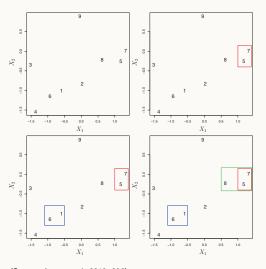




(Source: James et al. 2013, 393)

The Hierarchical Clustering Algorithm: Example

First few steps of the hierarchical clustering algorithm



(Source: James et al. 2013, 396)

The Hierarchical Clustering Algorithm

- In the figure above, how did we determine that the cluster $\{5,7\}$ should be fused with the cluster $\{8\}$?
- We have a concept of the dissimilarity between pairs of observations, but how do we define the dissimilarity between two clusters if they contain multiple observations?
- We need to extend the concept of dissimilarity between a pair of observations to a pair of groups of observations.
- The linkage defines the dissimilarity between two groups of observations.

The Hierarchical Clustering Algorithm

Summary of the four most common types of linkage

Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>smallest</i> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>average</i> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable <i>inversions</i> .

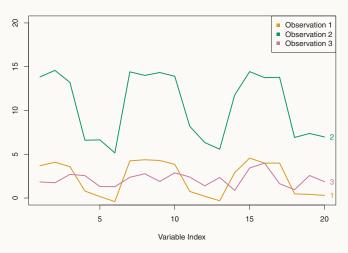
(Source: James et al. 2013, 395)

Choice of Dissimilarity Measure

- So far, we have used Euclidean distance as the dissimilarity measure.
- Sometimes other dissimilarity measures might be preferred.
- An alternative is correlation-based distance which considers two observations to be similar if their features are highly correlated.
- Correlation-based distance focuses on the shapes of observation profiles rather than their magnitudes.

Choice of Dissimilarity Measure

Three observations with measurements on 20 variables



(Source: James et al. 2013, 398)

Practical Issues in Clustering

In order to perform clustering, some decisions must be made.

- Should the observations or features first be standardized?
- In the case of hierarchical clustering:
 - What dissimilarity measure should be used?
 - What type of linkage should be used?
 - Where should we cut the dendrogram in order to obtain clusters?
- In the case of *K*-means clustering, how many clusters should we look for in the data?